Calculate Discount (in percentage \[\%\]) if,
Discount \[\% = \frac{SP - MP}{MP}\times100\]
\[=\left(\frac{60-50}{50}\times 100\right)\%\]
\[=\left(\frac{10}{50}\times 100\right)\%\]
\[=\left(\frac{1}{5}\times 100\right)\%\]
\[=20\%\]
Calculate Net Loss (in percentage \[\%\]) if,
Net Loss \[\% = \frac{CP - SP}{CP}\times100\]
\[=\left(\frac{200-100}{200}\times 100\right)\%\]
\[=\left(\frac{100}{200}\times 100\right)\%\]
\[=\left(\frac{1}{2}\times 100\right)\%\]
\[=50\%\]
Equivalent discount of successive discounts of \[10\%\] and \[20\%\]
\[=\left(10+20-\frac{\left(10\times 20\right)}{100}\right)\%\]
\[=\left(30-\frac{200}{100}\right)\%\]
\[=\left(30-2\right)\%\]
\[=28\%\]
A single discount equivalent to the successive discounts of \[10\%\], \[20\%\] and \[25\%\] is
This question will be solved in two parts :
Part - 1
Calculating Single of discount for successive discounts 10% and 20%
\[=\left(10+20-\frac{\left(10\times 20\right)}{100}\right)\%\]
\[=\left(30-\frac{200}{100}\right)\%\]
\[=\left(30-2\right)\%\]
\[=28\%\]
Part - 2
Calcuating Single of discount for successive discounts 28% and 25%
\[=\left(28+25-\frac{\left(28\times 25\right)}{100}\right)\%\]
\[=\left(53-\frac{28}{4}\right)\%\]
\[=\left(53-7\right)\%\]
\[=46\%\]
CP \[= Rs.200\]
Gain \[= 50\%\]
\[\therefore\] Selling Price
\[=\frac{CP\times \left(100+Gain\%\right)}{100}\]
\[=\frac{200\times \left(100+50\right)}{100}\]
\[=\frac{200\times \left(150\right)}{100}\]
\[=2\times 150\]
\[=300\]
Hence, selling price \[=Rs.300/-\]
Let the Cost Price \[(CP) = x\],
Then, According to the question
\[SP = (100+5)\% \ of\ CP\]
\[210=\frac{105}{100}\times x\Rightarrow x\]
\[=\frac{\left(210\times 100\right)}{105}\]
\[=2\times 100\]
\[=200\]
Hence, the Cost Price \[(CP)=Rs.200/-\]
If \[\left(D_1,D_2,D_3\right)\] are successive discounts, then equivalent discount/overall discount is (in percentage)
\[=100-\left[\left(\frac{100-D_1}{100}\right)\left(\frac{100-D_2}{100}\right)\left(\frac{100-D_3}{100}\right)\times 100\right]\]
\[\therefore\] Equivalent Discount
\[=100-\left[\left(\frac{100-10}{100}\right)\left(\frac{100-20}{100}\right)\left(\frac{100-30}{100}\right)\times 100\right]\]
\[=100-\left[\left(\frac{90}{100}\right)\left(\frac{80}{100}\right)\left(\frac{70}{100}\right)\times 100\right]\]
\[=100-\left[\left(\frac{9}{10}\right)\left(\frac{8}{10}\right)\left(\frac{7}{10}\right)\times 100\right]\]
\[=100-\left[\left(\frac{9\times 8\times 7}{1000}\right)\times 100\right]\]
\[=100-\left(\frac{9\times 8\times 7}{10}\right)\]
\[=100-\left(\frac{504}{10}\right)\]
\[=100-50.4\]
\[=49.6\%\]
Calculate Market Price \[(MP)\] if,
\[MP=\frac{SP\times 100}{100-D}\]
\[=\frac{1600\times 100}{100-20}\]
\[=\frac{1600\times 100}{80}\]
\[=20\times 100\]
\[=2000\]
Hence, Market Price \[(MP)=Rs.2000/-\]
\[2\] articles are given free on purchasing \[5\] articles. Then, Discount % is _________
‘y’ articles (quantity/number) are given free on purchasing ‘x’ articles. Then, Discount %
\[=\left(\frac{y\times 100}{x+y}\right)\%\]
\[\therefore Discount\]
\[=\frac{\left(2\times 100\right)}{2+8}\]
\[=\frac{\left(2\times 100\right)}{10}\]
\[=\frac{200}{10}\]
\[=20\%\]
A tradesman marks his goods \[3\%\] above his cost price. If he allows his customers a discount of \[2\%\] on the marked price. how much profit or loss does he make, if any ?
A tradesman marks his goods \[r_1\%\] above his cost price. If he allows his customers a discount of \[r_2\%\] on the marked price. Then his profit or loss percent is
\[\frac{r_1\times \left(100-r_2\right)}{100}-r_2\]
Hence Profit or Loss %
\[=\frac{3\times \left(100-2\right)}{100}-2\]
\[=\frac{3\times 90}{100}-2\]
\[=\frac{270}{100}-2\]
\[=2.7-2\]
\[=0.7\%\]
Positive sign signifies profit of \[0.7\%\]
A tradesman marks his goods \[4\%\] above his cost price. If he allows his customers a discount of \[5\%\] on the marked price. how much profit or loss does he make, if any ?
A tradesman marks his goods \[r_1\%\] above his cost price. If he allows his customers a discount of \[r_2\%\] on the marked price. Then his profit or loss percent is
\[\frac{r_1\times \left(100-r_2\right)}{100}-r_2\]
Hence Profit or Loss %
\[=\frac{4\times \left(100-5\right)}{100}-5\]
\[=\frac{4\times 90}{100}-5\]
\[=\frac{360}{100}-5\]
\[=3.6-5\]
\[=-1.4\%\]
Negative sign signifies Loss of \[1.4 \%\]
Required selling price
\[=Rs.\left[700\times \frac{(100-20)}{100}\times \frac{(100-10)}{100}\right]\]
\[=Rs.\left[700\times \frac{80}{100}\times \frac{90}{100}\right]\]
\[=Rs.504\]
Let C.P. be \[100\]
Marked price \[= 110\]
\[\therefore x\%\ of\ 110=11\]
\[\Rightarrow x=\frac{\left(11\times 100\right)}{110}\]
\[=10\%\]
Let the C.P. be \[100\]
\[\therefore\] Marked price \[= 130\]
S.P. \[= 85 \% \ of \ 130\]
\[=Rs.\left(\frac{85\times 130}{100}\right)\]
\[=Rs.110.5\]
\[\therefore\] Gain percent \[= 10.5\%\]
Let the C.P. of article be \[100 \]
\[\implies\] Marked price \[= 145\]
\[\Rightarrow\] SP \[=\frac{145\times 80}{100}\]
\[=Rs.116\]
\[\implies\] Profit percent \[=116\%\]