\[\frac{1}{\sqrt{3}}\times \sqrt{48}\]
\[=\frac{1}{\sqrt{3}}\times \sqrt{2\times 2\times 2\times 2\times 3}\]
\[=\frac{1}{\sqrt{3}}\times \sqrt{2^2\times 2^2\times 3}\]
\[=\frac{1}{\sqrt{3}}\times 2^2\sqrt{3}\]
\[=2^2\]
\[=4\]
\[\frac{\left(\sqrt{100}+\sqrt{81}+\sqrt{64}+\sqrt{49}+\sqrt{36}\right)}{40}=?\]
\[\frac{\left(\sqrt{100}+\sqrt{81}+\sqrt{64}+\sqrt{49}+\sqrt{36}\right)}{40}\]
\[=\frac{\left(\sqrt{10^2}+\sqrt{9^2}+\sqrt{8^2}+\sqrt{7^2}+\sqrt{6^2}\right)}{40}\]
\[=\frac{\left(10+9+8+7+6\right)}{40}\]
\[=\frac{40}{40}\]
\[=1\]
\[\left[\frac{2\sqrt{3}}{\sqrt{12}}\times \frac{\sqrt{18}}{3\sqrt{2}}\right]=?\]
\[\left[\frac{2\sqrt{3}}{\sqrt{12}}\times \frac{\sqrt{18}}{3\sqrt{2}}\right]\]
\[=\left[\frac{2\sqrt{3}}{\sqrt{2\times 2\times 3}}\times \frac{\sqrt{3\times 3\times 2}}{3\sqrt{2}}\right]\]
\[=\left[\frac{2\sqrt{3}}{2\sqrt{3}}\times \frac{3\sqrt{2}}{3\sqrt{2}}\right]\]
\[=1\times 1\]
\[=1\]
Let the age of Manoj be \[x\]
Then, age of Alok will be \[2x\]
According to the question,
\[x\times 2x=800\]
\[\Rightarrow 2x^2=800\]
\[\Rightarrow x^2=400\]
\[\Rightarrow x=\sqrt{400}\]
\[\Rightarrow x=20\]
\[\therefore\] age of Alok = \[2x =2\times20=40\] years
Let the width be \[x\]
Then, the length will be \[3x\]
According to the question,
\[x \times 3x = 1200 m^2\]
\[\implies 3x^2 =1200m^2\]
\[\implies x^2=\frac{1200m^2}{3}\]
\[\implies x=\sqrt{400m^2}\]
\[\implies x=20m\]
\[\therefore\] the width is = 20m
and length \[=3 \times\] width
\[=3\times 20m=60m\]
\[\frac{\sqrt{\left(\sqrt{\left(\sqrt{2}\right)^2}\right)^{^2}}}{x^2}\]
\[=\frac{\sqrt{\left(\sqrt{2}\right)^2}^{^{ }}}{(\sqrt{2})^2}\]
\[=\frac{\sqrt{2}}{2}\]
\[=\frac{\sqrt{2}}{\sqrt{2\times 2}}\]
\[=\frac{1}{\sqrt{2}}\]