\[\Bigg(\sqrt{2}+\frac{1}{\sqrt{2}}\Bigg)^2\]
\[=(\sqrt{2})^2+\Bigg(\frac{1}{\sqrt{2}}\Bigg)^2+2(\sqrt{2})\Bigg(\frac{1}{\sqrt{2}}\Bigg)\]
\[=2+\frac{1}{2}+2\]
\[=4+\frac{1}{2}\]
\[=4\frac{1}{2}\]
\[\frac{9}{20}-\left[\frac{1}{5}+\left\{\frac{1}{4}+\left(\frac{5}{6}-\overline{\frac{1}{3}+\frac{1}{2}}\right)\right\}\right]\]
is equal to\[\frac{9}{20}-\left[\frac{1}{5}+\left\{\frac{1}{4}+\left(\frac{5}{6}-\overline{\frac{1}{3}+\frac{1}{2}}\right)\right\}\right]\]
\[=\frac{9}{20}-\left[\frac{1}{5}+\left\{\frac{1}{4}+\left(\frac{5}{6}-\frac{5}{6}\right)\right\}\right]\]
\[=\frac{9}{20}-\left[\frac{1}{5}+\frac{1}{4}\right]\]
\[=\frac{9}{20}-\frac{9}{20}\]
\[=0\]
Let \[\ast = x\], then
\[\left[\frac{\left(x\right)}{21}\times\frac{\left(x\right)}{189}\right]=1\]
\[(x)^2 = 21 × 189\]
\[\Rightarrow x=\sqrt{21\times189}=63\]
\[a = 64\] and \[b = 289\]
\[\therefore a = \sqrt{64} = 8\]
and \[b = \sqrt{289} = 17\]
\[\therefore \left(\sqrt{\sqrt{a}+\sqrt{b}}-\sqrt{\sqrt{b}-\sqrt{a}}\right)^{\frac{1}{2}}\]
\[=\left(\sqrt{8+17}-\sqrt{17-8}\right)^{\frac{1}{2}}\]
\[=\left(\sqrt{25}-\sqrt{9}\right)^{\frac{1}{2}}\]
\[=\left(5-3\right)^{\frac{1}{2}}\]
\[=\left(2\right)^{\frac{1}{2}}\]
Simplify :
\[\frac{2}{3}\times\frac{3}{\frac{5}{6}\div\frac{2}{3}of\frac{5}{4}}\]
\[=\frac{2}{3}\times\frac{3}{\frac{5}{6}\div\frac{10}{12}}\]
\[=\frac{2}{3}\times\frac{3}{\frac{5}{6}\times\frac{12}{10}}\]
\[=\frac{2}{3}\times\frac{3}{\frac{5}{6}\times\frac{6}{5}}\]
\[=\frac{2}{3}\times3\]
\[=2\]