Rule | Description |
---|---|
1 |
An expression must be simplified by following defined order/sequence known as VBODMAS, which is given by:
There are four types of brackets given below.
These brackets must be solved in given order only. |
2 | \[a^2 + 2ab + b^2 = (a+b)^2\] |
3 | \[\frac{a^2-b^2}{a-b} =a+b\] |
4 | \[\frac{a^2-b^2}{a+b}=a-b\] |
5 | \[\frac{\left(a+b\right)^2+\left(a-b\right)^2}{\left(a^2+b^2\right)}=\] 2 |
6 |
\[\frac{a^3-b^3}{a^2-ab-b^2}\] \[=a+b\] |
7 |
\[\frac{a^3-b^3}{a^2+ab+b^2}\] \[=a-b\] |
8 |
\[\frac{1}{n\left(n+1\right)}+\frac{1}{n\left(n+1\right)\left(n+2\right)}+\frac{1}{n\left(n+2\right)\left(n+3\right)}+.....+\frac{1}{n\left(n+r-1\right)\left(n+r\right)}\] \[=\left(\frac{1}{n}-\frac{1}{n+1}\right)+\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+2}-\frac{1}{n+3}\right)\] \[+.....+\left(\frac{1}{n+r-1}-\frac{1}{n+r}\right)\] \[=\left(\frac{1}{n}-\frac{1}{n+r}\right)\] |
9 |
\[\frac{1}{n\left(n+2\right)}+\frac{1}{n\left(n+2\right)\left(n+4\right)}+\frac{1}{n\left(n+4\right)\left(n+6\right)}\] \[+.....+\frac{1}{\left(n+2r-2\right)\left(n+2r\right)}\] \[=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2r}\right)\] |