Simplification

Pratice Simplification Questions and answers.

START PRACTICE
Rule Description
1

An expression must be simplified by following defined order/sequence known as VBODMAS, which is given by:

  • 1st step, V – Vineculum (line brackets)/Bar
  • B – Brackets
  • O – Of
  • D – Division
  • M – Multiplication
  • A – Addition
  • Last step, S – Subtraction

There are four types of brackets given below.

  1. \[\bar \ \rightarrow\] Line/Bar
  2. \[( ) \ \rightarrow\] Simple or Small Bracket/open brackets
  3. \[\left\{\right\} \ \rightarrow\] Curly Brackets/Braces
  4. \[[ \ ]  \ \rightarrow\] Square Brackets/Closed brackets

These brackets must be solved in given order only.

2 \[a^2 + 2ab + b^2 = (a+b)^2\]
3 \[\frac{a^2-b^2}{a-b} =a+b\]
4 \[\frac{a^2-b^2}{a+b}=a-b\]
5 \[\frac{\left(a+b\right)^2+\left(a-b\right)^2}{\left(a^2+b^2\right)}=\] 2
6

\[\frac{a^3-b^3}{a^2-ab-b^2}\]

\[=a+b\]

7

\[\frac{a^3-b^3}{a^2+ab+b^2}\]

\[=a-b\]

8

\[\frac{1}{n\left(n+1\right)}+\frac{1}{n\left(n+1\right)\left(n+2\right)}+\frac{1}{n\left(n+2\right)\left(n+3\right)}+.....+\frac{1}{n\left(n+r-1\right)\left(n+r\right)}\]

\[=\left(\frac{1}{n}-\frac{1}{n+1}\right)+\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+2}-\frac{1}{n+3}\right)\]

\[+.....+\left(\frac{1}{n+r-1}-\frac{1}{n+r}\right)\]

\[=\left(\frac{1}{n}-\frac{1}{n+r}\right)\]

9

\[\frac{1}{n\left(n+2\right)}+\frac{1}{n\left(n+2\right)\left(n+4\right)}+\frac{1}{n\left(n+4\right)\left(n+6\right)}\]

\[+.....+\frac{1}{\left(n+2r-2\right)\left(n+2r\right)}\]

\[=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2r}\right)\]