Calculate Principal \[(P)\] if
\[P=\frac{SI\times 100}{R\times T}\]
\[=\frac{\left(6000\times 100\right)}{3\times 5}\]
\[=400\times 100\]
\[=40,000\]
Hence Principal \[(P)=Rs.40,000/-\]
Calculate Interest Rate \[(R)\] if
\[=\frac{SI\times 100}{P\times T}\]
\[=\frac{450\times 100}{5000\times 9}\]
\[=\frac{50\times 100}{5000}\]
\[=\frac{5000}{5000}\]
\[=1\%\]
Hence Interest Rate \[(I)=1\%\]
Calculate Time Duration \[(T)\] if
\[\frac{SI\times 100}{P\times R}\]
\[=\frac{6400\times 100}{20000\times 4}\]
\[=\frac{64}{8}\]
\[=8\]
Hence Time Duration \[(T)=8 \ years\]
Simple Interest on a certain Amount for \[2\] years is \[Rs.50\]. Simple Interest on the same amount in \[5\] years will be __________
Simple Interest in \[2\] years \[=Rs.50\]
\[\therefore\] Simple Interest for \[1\] year \[=Rs.\frac{50}{2}=Rs.25\]
\[\therefore\] Simple Interest in \[5\] years \[=Rs.(25\times5)=Rs.125/-\]
If the principal be \[x\] and rate of interest be \[x\%\] per annum, then
SI after \[1\] year \[= 920 – 880 = Rs.40\]
\[\therefore\] SI after \[2\] years \[= Rs.80\]
\[\implies 880 = x + 80 \]
\[\implies x = (880 – 80)\]
\[= Rs.800\]
According to the question,
Principal \[= Rs. x\].
Interest \[= Rs. x \].
Time \[= 16\frac{2}{3}=\frac{50}{3}\] years
\[\therefore R=\left(\frac{SI\times 100}{P\times T}\right)\%\]
\[=\left(\frac{x\times 100}{x\times \frac{50}{3}}\right)\%\]
\[=\left(\frac{100\times 3}{50}\right)\%\]
\[=6\%\]
According to the question,
Principal \[= Rs. x\].
Interest \[= Rs. x \].
Time \[= 16\frac{2}{3}=\frac{50}{3}\] years
\[\therefore R=\left(\frac{SI\times 100}{P\times T}\right)\%\]
\[=\left(\frac{x\times 100}{x\times \frac{50}{3}}\right)\%\]
\[=\left(\frac{100\times 3}{50}\right)\%\]
\[=6\%\]
\[R=\left(\frac{SI\times 100}{P\times T}\right)\%\]
\[=\left(\frac{9\times 100}{25\times 6}\right)\%\]
\[=\left(\frac{9\times 4}{6}\right)\%\]
\[=6\%\]
According to question,
\[\therefore P=\frac{SI\times 100}{R\times T}\]
\[=\frac{42\times 100}{5\times 1}\]
\[=42\times 20\]
\[=Rs.840\]
Let the larger part of the sum be x
\[\implies\] Smaller part \[= (12000 – x )\]
According to the question,
\[\frac{\left(x\times 3\times 12\right)}{100}=\frac{\left(1200-x\right)x\times 9\times 16}{100}\]
\[\implies 36 x = (12000 – x ) 72 \]
\[\implies x = (12000 – x ) × 2\]
\[\implies x + 2 x = 24000 \]
\[\implies 3 x = 24000\]
\[x=\frac{24000}{3}\]
\[=Rs.8000\]
According to the question
\[\frac{\left(P\times R\times 1\right)}{100}=\frac{\left(P\times 5\times 2\right)}{100}\]
[\[\because\] Capital is same in both cases]
\[r\times 1=5\times 2\]
\[\Rightarrow r=10\%\]