Let the two numbers be \[4x\] and \[5x\]
According to the question,
\[4x+5x=27\]
\[\implies 9x=27\]
\[\implies x=3\]
\[\therefore\] the two numbers are
Let the two numbers be \[5x\] and \[3x\]
According to the question,
\[5x-3x=20\]
\[\implies 2x=20\]
\[\implies x=10\]
\[\therefore\] the two numbers are
Let \[x\] be the mean proportional, then
\[48:x::x:12\]
\[\Rightarrow\frac{48}{x}=\frac{x}{12}\]
\[\Rightarrow x^2=48\times12\]
\[\Rightarrow x=\sqrt{48\times12}\]
\[\Rightarrow x=\sqrt{576}\]
\[\Rightarrow x=24\]
\[A : B = 4 : 5\]
\[B : C = 2 : 3\]
\[\therefore A : B : C = 4 × 2 : 5 × 2 : 5 × 3\]
\[= 8 : 10 : 15\]
If \[A\] equals \[800\], then \[C\] equals
\[\frac{800}{8}\times15=100\times15=1500\]
\[(a+b):(b+c)=?\]
\[a:b=2:3\]
\[b:c=4:5\]
\[\therefore a:b:c=2\times4:3\times4:3\times5\]
\[=8:12:15\]
\[\therefore\frac{a+b}{b+c}\]
\[=\frac{8+12}{12+15}\]
\[=\frac{20}{27}\]
\[=20:27\]
\[A : B = 3:5\]
Sum of the ratios
\[= 3+5=8\]
\[\therefore A’s\] share
\[Rs.\left(\frac{3}{8}\times40000\right)\]
\[=Rs.15000\]
\[A : B = 3 : 7\]
\[B : C = 6 : 5\]
\[A : B : C = 3×6 : 7×6 : 7×5\]
\[= 18 : 42 : 35\]
Sum of the ratios
\[= 18 + 42 + 35 = 95\]
\[\therefore B’s\] share
\[Rs.\left(\frac{42}{95}\times33630\right)\]
\[=Rs.14868\]
Boys : Girls \[= 5 : 6\]
Sum of the terms of ratio
\[= 5 + 6 = 11\]
\[\therefore\] Number of girls
\[= \frac{6}{11} × 55 = 30\]
Let their age be \[3 x\] and \[2 x\] years.
\[\therefore 3 x – 2 x = 5 \]
\[\implies x = 5\]
\[\therefore\] Younger student’s age
\[= 2 x = 2 × 5 = 10\] years