\[\left(\frac{\sqrt{64}}{\sqrt{36}}\right)^2\]
\[=\left(\frac{\sqrt{8\times8}}{\sqrt{6\times6}}\right)^2\]
\[=\left(\frac{8}{6}\right)^2\]
\[=\frac{8^2}{6^2}\]
\[=\frac{64}{36}\]
\[=\frac{16}{9}\]
Simplify :
\[\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)\]\[\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)\]
\[=\left(\sqrt{3}\times\sqrt{3}\right)+\left(\sqrt{3}\times-\sqrt{2}\right)+\left(\sqrt{2}\times\sqrt{3}\right)+\left(\sqrt{2}\times-\sqrt{2}\right)\]
\[=3-\sqrt{6}+\sqrt{6}-2\]
\[=1\]
Simplify :
\[\frac{\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2}{\sqrt{7}-\sqrt{5}}\]\[\frac{\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2}{\sqrt{7}-\sqrt{5}}\]
\[=\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}\]
\[=\sqrt{7}+\sqrt{5}\]
\[\left(2\sqrt{3}+3\sqrt{2}\right)-\left(\sqrt{3}+\sqrt{2}\right)\]
\[=\left(2\sqrt{3}-\sqrt{3}\right)+\left(3\sqrt{2}-\sqrt{2}\right)\]
\[=\sqrt{3}+2\sqrt{2}\]
\[\sqrt{5+2\sqrt{6}}\]
\[=\sqrt{3+2+2\times\sqrt{3}\times\sqrt{2}}\]
\[=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\]
\[=\sqrt{\sqrt{3}+\sqrt{2}}\]
\[=\sqrt{3}+\sqrt{2}\]
Given that \[\sqrt{2}=1.414;\]
the value of \[\frac{1}{\sqrt{2}+1}\] is
Expression = \[\frac{1}{\sqrt{2}+1}\]
\[=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\]
\[=\frac{\sqrt{2}-1}{2-1}\]
\[=\sqrt{2}-1\]
\[=1.414-1\]
\[=0.414\]
\[\frac{1}{\sqrt{3}+\sqrt{4}}\] equals :
\[\frac{1}{\sqrt{3}+\sqrt{4}}\]
\[=\frac{1}{\sqrt{3}+\sqrt{4}}\times\frac{\sqrt{4}-\sqrt{3}}{\sqrt{4}-\sqrt{3}}\]
\[=\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}\right)^2-\left(\sqrt{3}\right)^2}\]
\[=\frac{\sqrt{4}-\sqrt{3}}{4-3}\]
\[=\frac{\sqrt{4}-\sqrt{3}}{1}\]
\[=\sqrt{4}-\sqrt{3}\]