Rule | Description |
---|---|
1 |
If any number is multiplied by the same number ‘n’ times, then, \[a×a×a× ............. × a \ (n \ times ) = a^n\]
|
2 |
|
3 | \[a^x\times b^x\times c^x=\left(abc\right)^x\] |
4 | \[a^m\div a^n=a^{m-n}\] |
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
If the indices on any number is zero, the value of that number is 1, as \[x^0 = 1\], \[5^0 = 1\], \[(5000)^0 = 1\] |
11 | \[\sqrt[n]{a}=\left(a\right)^{\frac{1}{n}}\] |
12 | \[\left(\sqrt[n]{a}\right)^n=a\] |
13 | \[\sqrt[n]{ab}=\sqrt[n]{a}\times\sqrt[n]{b}=\left(a\right)^{\frac{1}{n}}\times\left(b\right)^{\frac{1}{n}}\] |
14 | \[\sqrt[n]{\sqrt[n]{a}}=\left(\left(a\right)^{\frac{1}{n}}\right)^{\frac{1}{n}}=a^{n^{\frac{1}{2}}}\] |
15 | \[n\sqrt{\frac{a}{b}}=\frac{n\sqrt{a}}{n\sqrt{b}}=\left(\frac{a}{b}\right)^{\frac{1}{n}}\] |
16 | \[\sqrt[m]{\sqrt[n]{a}}=\sqrt[mn]{a}\] |
17 | \[\sqrt{x\sqrt{x\sqrt{x\sqrt{x..........n\ times}}}}=x^{\left(1-\frac{1}{x^n}\right)}\] |
18 | If \[x=n(n+1)\], then\[\sqrt{x-\sqrt{x-\sqrt{x-.....\infty}}}=n\] |
19 | If \[x=n(n+1)\], then\[\sqrt{x+\sqrt{x+\sqrt{x+.....\infty}}}=(n+1)\] |
20 | \[\sqrt[a]{b}, \sqrt[c]{d}, \sqrt[e]{f}, \sqrt[g]{h}\] To find smallest or greatest out of these, we should equate all the indices and compare the base. |