| Rule | Description | 
|---|---|
| 1 | If any number is multiplied by the same number ‘n’ times, then, \[a×a×a× ............. × a \ (n \ times ) = a^n\] 
 | 
| 2 | 
 | 
| 3 | \[a^x\times b^x\times c^x=\left(abc\right)^x\] | 
| 4 | \[a^m\div a^n=a^{m-n}\] | 
| 5 | 
 | 
| 6 | 
 | 
| 7 | 
 | 
| 8 | 
 | 
| 9 | 
 | 
| 10 | If the indices on any number is zero, the value of that number is 1, as \[x^0 = 1\], \[5^0 = 1\], \[(5000)^0 = 1\] | 
| 11 | \[\sqrt[n]{a}=\left(a\right)^{\frac{1}{n}}\] | 
| 12 | \[\left(\sqrt[n]{a}\right)^n=a\] | 
| 13 | \[\sqrt[n]{ab}=\sqrt[n]{a}\times\sqrt[n]{b}=\left(a\right)^{\frac{1}{n}}\times\left(b\right)^{\frac{1}{n}}\] | 
| 14 | \[\sqrt[n]{\sqrt[n]{a}}=\left(\left(a\right)^{\frac{1}{n}}\right)^{\frac{1}{n}}=a^{n^{\frac{1}{2}}}\] | 
| 15 | \[n\sqrt{\frac{a}{b}}=\frac{n\sqrt{a}}{n\sqrt{b}}=\left(\frac{a}{b}\right)^{\frac{1}{n}}\] | 
| 16 | \[\sqrt[m]{\sqrt[n]{a}}=\sqrt[mn]{a}\] | 
| 17 | \[\sqrt{x\sqrt{x\sqrt{x\sqrt{x..........n\ times}}}}=x^{\left(1-\frac{1}{x^n}\right)}\] | 
| 18 | If \[x=n(n+1)\], then\[\sqrt{x-\sqrt{x-\sqrt{x-.....\infty}}}=n\] | 
| 19 | If \[x=n(n+1)\], then\[\sqrt{x+\sqrt{x+\sqrt{x+.....\infty}}}=(n+1)\] | 
| 20 | \[\sqrt[a]{b}, \sqrt[c]{d}, \sqrt[e]{f}, \sqrt[g]{h}\] To find smallest or greatest out of these, we should equate all the indices and compare the base. |